Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery.
نویسندگان
چکیده
The development of non-toxic quantum dots and further investigation of their composition-dependent cytotoxicity in a high-throughput manner have been critical challenges for biomedical imaging and gene delivery. Herein, we report a rapid sonochemical synthetic methodology for generating a library of highly biocompatible ZnS-AgInS(2) (ZAIS) quantum dots for cellular imaging and siRNA delivery.
منابع مشابه
Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملApplications of Quantum Dots in Cell Tracking
Tracking cells after transplantation is always one the main concerns of researchers in the field of regenerative medicine. Finding a tracer with long stability and low cytotoxicity can be considered as a solution for this issue. Semiconductor nanocrystals, also called quantum dots (QDs), have unique photophysical properties which make them as suitable candidate in this setting. Broad-range exci...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery: preparation, characterization and cellular uptake
Objective(s): Lipid-based nanoparticles (NLP) are PEGylated carriers composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The presence of PEG in the NLP formulation improves the particle pharmacokinetic behavior. The purpose of this study was to prepare and characterize NLPs containing MDR1 siRNA and evaluate their cytotoxicity and cellular uptake. MDR1 siRNA coul...
متن کاملQuantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA.
A new generation of nanoparticle carrier that allows efficient delivery and real-time imaging of siRNA in live cells has been developed by combining two distinct types of nanomaterials, semiconductor quantum dots and amphipols. An important finding is that, although amphipols are broadly used for solubilizing and delivering hydrophobic proteins into the lipid bilayers of cell membrane, when com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced materials
دوره 24 29 شماره
صفحات -
تاریخ انتشار 2012